Name: \qquad

1. Find the roots of the quadratic equation $(x-5)(x-8)=7$.
2. Express $f(x)=-\frac{3}{4} x^{2}-15 x+78$ in the form $a(x-h)^{2}+k$.
3. Find the maximum or minimum value of $g(x)=-2 x^{2}+16 x-24$ and state clearly whether it is a maximum or a minimum.
4. An object is thrown upwards at time $t=0$. The object's height h in feet above the ground t seconds later is given by the formula,

$$
h=-16 t^{2}+3 t+8
$$

Determine the exact number of seconds t required for the object to return to the ground.
5. Determine the range of the function $h(x)=6 x^{2}+3 x+6$.
6. Flights of leaping animals typically have parabolic paths. The figure below illustrates a frog jump. The length of a leap is 9 feet, and the maximum height off the ground is $3 d$ feet. Find an equation in the form $y=a(x-h)^{2}+k$ for the path of the frog, if $d=1.5$ feet in the figure.

7. A business forms a model of its watch sales via a pricing function $p(n)=400-\frac{50}{8} n$, where n is the number of watches sold and $p(n)$ is the sales price in dollars per watch.
a) Find the revenue function $R(n)$ for this business.
b) Find the number n sold which will maximize revenue.
c) What is the maximum revenue?

